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INTRODUCTION

A necessary condition for forming a compound nucleus in a heavy-ion re-
action is that the dynemical trajectory of the fusing system pass inside the
fission saddle point in a multidimensional deformation space. For nuclear
systems lighter than a critical size and for relatively low angular momentum,
the fission saddle point lies outside the point of hard contact, and this
requirement is automatically satisfied once a one-dimensional interaction
barrier is overcome. However, for heavier nuclear systems and/or for high
angular momentum, the fission saddle point lies inside the contact point, and
the center-of-mass bombarding energy must then exceed the maximum in the une-
dimensional interacticn barrier by an amount AE in order to form a compound
nucleus., This was recogni;ndl’z already in 1969, and since 1973 dynamical
trajectories for fusing systems have been calculated by use c¢f several ap-
proa\ches.3-17

In one approach.3_7 cltassicai equations of motion were solved numerically
for a system whose shape is specified in terms of smoothly joined portions of
three quadratic surfaces of revolution, with realistic expressions for the
energies and forces involved, For symmelric systems, which have been con-
stdered most extensively within this approach, three collective coordinates

[$
are required, Although some calculations included two body viscosfty,la‘l)
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most were performed for zero dissipation.

In another approach, pioneered by Swiatecki,e-11 classical equations of
motion were solved approximately in closed form for a system whose shape is
specified in terms of two spheres connected by a conical neck, with schematic
expressions for the energies and forces involved. Nuclear dissipation was

calculated by expanding the one-body wall-and-window formulalg.z1

to third
order in the neck radius. The solution of this schematic model is charac-
terized by five constants, some of whose values have been estimated both

8,12-14 -11 22

Lheoretically and from compam‘sons9 with experimental data. The

theoretical estimates have been made by use of both the origiral schematic

mode]8 and improved models,lzu14

in which the nuclear shape is specified in
terms of two spheres connected smoothly by a hyperboloidal neck, the col-
lective potential and kinetic energies and one-body wall-and-windcw dis-
sipation are calculaced more accuretely, and the equations of motion ave in-
tegrated numerically.

| S
In still another approach,1J 17

the time-dependent Hartree-Fock equations
of motion were integrated numerically for a two-dimensional grid corresponding
to axially symmetric nuclear shapes. For moderately heavy systems, the onset
of fusion is at an energy considarably above the maximum in tha {nteraction
barrier, and this phenonenon is at least qualitatively related to the energy
thresholds found in the macrosconic studies.B—]‘4
A1 of the theoretical approaches discussed above predict that for suf-
ficiently heavy nuclear systems and/or high angular momentum the center-of-
mass hombarvdine energy must exceed the maxinum in the one-dimensional inter-
action barrier by an amaunt Al in order to form a compound nucleus.  The ne-
cess ity for such an additional energy has heen suggested experimentally in

Q- PR
several recent atudivs,) Woz-27

although an alternate interpretation in
28
terms of large surface friction has been proposed. (The opposite conclusion
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obtained in an earlier study29 was based on comparisons with a schematic
mode1,8 whose estimated constants are now known to be unreliable.) Although
the comparisons with experimental data have sometimes been interpreted as
evidence for one-body wall-and-window dissipation, it must be borne in mind
that the additional energy arises from the need to overcome both repulsive
Coulomb and/or centrifugal forces on the ore hand and dissipative forces on
the other hand. In the comparisons made to date, no attempt has been made to
distinguish between conservative and dissipative forces.

It is our major purpose here to calculate within a single unified model
the dependence of the additional energy AE upon 22/A for various types of
dissipation, in an effort to ultimately determine the magnitude and mechanisim
of nuclear dissipation from comparisons with experimental! data. Sgnce both
our predictions and ithose of other groups depend somewhat upon the details of
the model, we also study the effect of the shape parametrization on the dy-

namical thresholds.

DYNAMICAL MODEL

We focus from the outset on a few collective degrees of rfreedom that are
most important and describe the nuclear shape by means of the three-cuadratic-
surface parametrization.BO in which an axially symmetric shape consists of
smonthly joined portions of three quadratic surfaces of revotution. For this
paper we consider only head-on mass-symmetric collisvions, which reduces the
number of independent collective coovdinates to three It is convenient to
project out of this three-dimensional space two moments of the distributicn

that have special physical significance. These are deflined by3m7’18’19

v Lz (1)



and

=2 <(z - 'z>)2>1/2

, (2)

where z is measured along the symmetry axis and the angular brackets denote an
average over the half volume to the right of the midplane of the reflection-
symmetric shape. The moment r gives the distance between the mass centers of
the two colliding ions, while o measures the fragment elongation or the neck-
ing in the combined system. In general, they are functions of the N collec-
tive coordinates q = CIERRREL Y that specify the shape of the systam.

The nuclear potential energy of deformation V(q) is calculated in terms
of a Coulomb energy and a double volume integral of a Yukawa-plus-exponential
folding function,31 with values of the constants determined in Ref. 32. The
collective kinetic energy is given by

p: , (3)

_l .._l -1
T = 2 Mij(Q) qi q. 2 [M(Q) ]ij pi j

J

where the collective monienta p are related to the collective velocities é by

Py = Mi5(@) éj : (4)

-

Throughout this paper we use the convention that repeated indices are to be
summed over from 1 to N. The inertia tensor M(q), which is a function of the
shape of the system, is calculated for incompressible, nearly irrotational

her e v v . 18,30
flow by use of the Werner-Wheeler approximation.
The coupling between the collective and internal degrees of freedom gives

rise to a ditsipative force, whose average component in the fth direction may

be written as

R PR R PR PR 'M(Q)—IIJK P )
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For the calculation of the shape-dependent dissipation tensor n that describes

the conversion of collective energy into internal single-particle excitation

energy, we consider zero dissipation, ordinary two-hody viscosity,le’19

19-21

one-

body wall-formula dissipation,
19-21

and one-body wall-and-window dissipa-
tion. For ordinary two-body viscosity, we use the viscosity coefficient
p = 0.02 TP, which optimally reproduces average fission-fragment kinetic

energies for the fission of nuclei at high excitation energies throughout the

Periodic Table when the most recent constants32

of the Yukawa-plus-exponential
potential are used. The two types of one-body dissipation differ from each
cther in the following way: In the wall formula all velocities normal to the
nuclear surface are measured relative to tha stationary center of mass of the
combined system and no window term is included, whereas in the wall-and-window
formula surface normal velocities for a given half of the system are measured
relatiave to the moving center of mass of that half, and an additional term is
included to describe dissipation arising from the flux of particles through
the window separating the two halves.

During the approach of the two nuclei from infinity and until a substan-
tial neck has developed, we constrain the nuclei to spheres. After contact
the nuclear density is assumed to rerain constant throughout the shape, with
the displaced matter forming a hyperboloidal neck. For all cases except zero
dissipation, we calculate the dissipative force during the approach and con-

33 which takes

tact stages from Randrup's proximity window dissipation model,
into account the momentum transfer between the two nucli~i when single par-
ticles pass through the window. “hen the neck radius reaches a critical size,
which 1s taken to be 3.0 fm for all cases except wall-and-window dissipation,

where it 1s taken to be 3.5 fm for numerical reasons, we switch to the full

three-quadratic-surface parametrization.



The trajectory for the averagz dynamical path is determined by solving

numerically the generalized Hamilton equations18

— _1\
and
: v 1 b(M-])jk -1
Py =T By T2 Taa; o Pi Pk Mg M gk Pec 7)

CALCULATED RESULTS

In our studies of the dynamics of heavy-ion rractions, we are especially
concerned with whether a particular collision leads to compound-nucleus forma-
tion. For this purpose, we plot in r-o deformation space both the dynamical
trajectory for a particular reaction and the location of the saddle point for
the combined system. The criterion6 adopted for compound-nucleus formation is
that the trajectory in r-o space pass inside (to the left of) the saddle
point. When the trajectory passes outside (to the right of) the caddle point,
the system reseparates in a fast-fission34 or deep-inelastic reaction.

We also obtain the threshold erergy for compound-nucleus formation. Tnis
minimum energy required to produce ~ compound nucleus is determined by . .nding
the dynamical trajectory that just passes through the saddle point. Since our
calculations are for mass-symmetric reactiors, there is no difference here
between the true saddle point and the conditional saddle point for fixed mass

8-14

asymmetry, Thus, the fusion that we obtain is exclusively compound-

nucleus formation, with no contribution from mass-equililbhrated fast f‘iss*’on.34
For the reaction 11OPd + llopd v 2?OU at a center-of-mass bombarding

energy that exceeds the maximum in the one-dimensional interaction barricr by



20 MeV, we show in Fig. 1 dynamical trajectories for five different types of
dissipation. In addition to the four types previously mentioned, we include
an example of pure window dissipation, obtained by omitting the wall contri-
bution in wall-and-window dissipation. The dynamical paths for no dissipation
and two-body viscosity, which are very similar because the viscosity coef-
ficient p = 0.02 TP is relatively small, prefer changes in separation r rather
than neck formation o and lead to compound-nucleus formation. On the other
hana, the one-body-dissipation models all generate trajectories in which o
changes much more rapidly than r, leading to reseparation rather than com-
pound-nucleus formation.

For this same reaction and bombarding energy, we show in Fig. 2 dynamical
trajectories for four types of dissipation when the end bodies are constrained

12-14 The most dramatic

to be spnerical, which is a widely used approximation.
effect on the trajectories occurs for two-body viscosity, where the spherical
constraint leads to more compressed shapes in Fig. 2 compared to the uncon-
strained shapes in Fig. 1. As shown in Table 1, constraining the ends to be
spherical can lead to significant differences in the calculated additional
energy AE required to form a compound nucleus. For example, for the wall
formula rthe additional energy AE is about 30 MeV larger when the spherical
constraint is not imposed.

For each of the four types of dissipation considered, we have calculated
the additional energy AE required to form a compound nucleus as a function of
22/A for the combined system, with the requirement that the target and pro-
jectile each lie alung Green's approximation to the valley of B-stab11ity.35
As shown in Fig. 3, for both types of one-body dissipation, which correspond

to highiy overdamped motion, our calculated values of AE are in general an

order of magnitude larger than those for zero dissipation and ordinary two-



body viscosity, which ccrrespond to underdamped motion. The values of AE for

wall-formula dissipation are larger than those for wall-and-window dissipation
primarily because the surface normal velocities measured relative to the sta-

tionary center of mass of the entire system in the former case are larger than
the normal velocities measured relative to the moving centers of mass of each

half of the system in the latter case.

Above the threshold value (ZZ/A)thr which depends somewhat upon dis-
sipation, our calculated dependence of AE on ZZ/A ~ (ZZ/A)thr contains a
linear component because we begin our dynamical calculation in the three-
quadratic-surface parametrization for a shape with a nonzero neck radius. To
lowest nrder, AE depends quadratica]]ya-ll on ZZ/A - (ZZ/A)thr when the
jnitial conditions correspond to starting with spheres at the top of the one-
dimensional interaction barrier moving radially inward with kinetic energy AE.
However, this lowest-order quadratic dependence is destroyed when dyvnamical
effects that occur during the approach and contact stages are taken into
account. Also, quantal sub-barrier tunneling destroys the quadratic depen-
dence. Therefore, little physical significance should be attached to the
lowest-order functional dependence of AE on ZZ/A - (ZZ/A)thr and consequently

to the precise value of (ZZ/A)thr‘ Instead, attention should be focused on

the rate of increase of AE with increasing 22/A a few MeV atove the threshold.

COMPARISON WITH EXPERIMENTAL "ATA
In order to compare our results calculated for symmetric systems with
experimental values, it is necessary to scale the asymmetric sy<!'cms that have
been studied experimentally into symmetric ones. Near the contact region, the

effective va]u98-14,22-27,29



2 - 1/3 ,1/3,,1/3 1/3
(Z /A)eff = 4 Z1 22/[A1 A2 (A1 + A2 )] (8)
defined in terms of the atomic numbers and mass numbers of the projectile and
target provides an approximale scaling. Because the dynamical trajectory of a

fusing system moves from the contact region, where (ZZ/A) i5 appropriate,

eff
to the saddle-point region, where ZZ/A for the combined system is appropriate,
scaling in terms of the geometric meann’lz’23
2 _ 2 2 1/2
(/M) gan = LZE/RIZE/A) 4] (9)

should be approximately valid. This expectation can be verified by replotting
the results presented in Fig. 4 of Ref. 13 versus (ZZ/A)mean instead of
(ZZ/A)eff, which largely reconciles Feldmeier's calculations for asymmetric
systems with those for symmetric systems presented in Table 1 of Ref. 13. The
more recent calculations for asymmetric systems by Btocki and Swiatecki12 also
support the choice of (ZZ/A)mean for a scaling variable.

Figure 4 compares our calculated values of the additional center-of-mass
bombarding energy AE required for compound-nucleus formation with existing
experimental values. Solid symbols denote values extracted from measurements

23,24,29

of evaporation residues, which require the formation of true compound

nuclei. Open symbols denote valu:s extracted from measurements of nearly

symmetric fission-]1'ke-f\r*agment.s,9’25’26

where fast-fission processes con-
tribute in addition to true compound-nucleus tormation. For both the solid
and open symbols, the experimental values of the additiunal energy AE are
determined by subtracting from the experimental barrier heights extrapolated
values that correctly reproduce the smooth trends for somewhat lighter nuclei.

9-11,23

For consistency with recent practice, these extrapolated values are

taken to be 96% of the barrier heights calcu1ated23 with the proximity po-



tentia136 for all cases except the open triangle, where the procedure of Ref.
26 is followed.

Taken together, all experimental values of AE in Fig. 4 agree much better
with results calculated for underdamped motion arising from two-body viscosity
than with resuits calculated for overdamped motion arising from either type of
one-body dissipation. However, hecause the solid symbols usually lie somewhat
above the open symbcelis, and because the error bars for the three solid symbols

with the largest values of (2‘2/.4\)"]ea extend to «, this conclusion must be

n

regarded as tentative.

OUTLOOK
We are on the brink of determining the magnitude and mechanism of nuclear
dissipation. %o do this unambiguously, we need further evaporation-residue
measureinents, which represent the only definitive proof of compound-nucleus
formation, for hcavy nearly symmetric systems spanning the threshold region.
As an alternative approach, calculations are presently underway for some asym-

metric systems that have been studied experimentally.
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Table 1. Calculated additional energy AE relative to the maximum in the

one-dimensional interaction barrier required to form a compound nucleus

in a head-on collision for 110Pd + 110Pd -+ 220U. The neck radius "n at
which the three-quadratic-surface numerical integration begins is 3.0 fm

unless indicated otherwise.

Type of dissipation AE (MeV)
Ful®™ three-quadratic- “ Spherical
suriace parametrization ends
No dissipation 1.5 £ 0.2 4.5+ 0.1
Two-budy viscosity, y = 0.02 TP 5 0.5 0.5+ 0.5
Wall formula 90 t 2 60 t 2
Wall and winduw - — 6 £ 0.5
Wall and window, rn = 3.5 fm 39 + 0.5 32 + 0.5

14



FIGURE CAPTIONS
Fig. 1. Effect of dissipation on dynamical trajectcries in the r-o plane

110pd . 110 220

for the reaction Pd » U at AE = 20 MeV in the full three-quadratic-
surface parametrization. The interval AE is defined as the difference between
the bombarding energy in the center-of-mass system and the maximum in the one-
dimensional interaction barrier. The moment r is the distance between the
centers of mass of the two halves of the system, and the moment u is the sum of
the root-mean-square extensions alonyg the symmetry axis ot the mass of each
half about its center of mass, both measured in units of the radius R0 of the
combined system. Solid circles indicate the single-sphere and tangent-spheres
configurations, and the open circl. inlicates where the neck radiu; is 3.0 vm.
At this point the three-quadratic-surface numerical integration begins for
all cases except wall-and-window dissipation, for which it bagins when the
neck radius is 3.5 fm. The saddle-point configuration for the combined s,stem
15 indicated by a cross (x).

Fig. 2. Effect of dissipation on dynamical trajectories in the r-o planc

for the reaction 10pg + 110 220

Pd » U at AE = 20 MeV when tne end bodies are
constrained to be spherical. (In this figure the three-quadratic-surface
wimerical integration begins when the neck radius is 3.0 fm also for wall-and-
window dissipation.)

big. 3. Fffect of dissipation on the additional center-of-mass bombarding
enerrgy AL relative to the maximum in the one-dimensional intevaction barrfer
required to form a compound nucleus in a head-on collisfon. The smooth curves
are drawn by hand through the calculated points.  The value of 7?/A refers to

the combined system, with the symmetrvic target and projectile chosen to lie

along Green's approximation to the valley of pi-stability (Ret. 3h).



Fig. 4. Comparison of additional energy Af required for compound-nucleus
formation calculated for symmetric systems with experimental values for asym-

metric systems characterized by (ZZ/A) defined by Eq. (9). Values ex-

mean’
tracted from evaporation-residue measurements are represented by solid symhols
(e, Ref. 24, m, Ref. 29; and A, Ref. 23), whereas values extracted from
measurements cf nearly symmetric fission-like fragments are represented by

open symbols (o, Ref. 9; r, Ref. 25; and A. Ref. 26).
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